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Abstract—Proximity ranging is very important in many
applications. Ultrasonic sensors have proven to be very cost
effective tools for this purpose. Most of the currently available
time-of-flight based acoustic proximity ranging systems use
the conventional matched filter based time delay estimation
approaches to measure short distances between proximity objects.
However, in the presence of strong and closely spaced secondary
echoes, the aforementioned matched filter based algorithms tend
to fail or suffer from severe performance degradations due to their
poor resolutions. In this paper, a computationally efficient time
delay estimation algorithm, referred to as multiecho parameter
estimation for acoustic ranging systems, is described for the joint
proximity range estimation and secondary echo mitigation. The
effectiveness of the proposed algorithm is demonstrated by both
numerical and experimental examples.

Index Terms—Acoustic transducer, proximity ranging, sec-
ondary echoes, time delay estimation.

I. INTRODUCTION

M EASURING the distance between a known base loca-
tion and the surface of a proximal object is referred to

as proximity ranging [1]. Proximity ranging is very important
in a wide range of remote sensing applications, including level
detection, robot manipulation, process control, nondestructive
testing, and cavity thickness monitoring [1]–[4].

Various types of sensors based on different physical prin-
ciples such as capacitive or inductive proximity sensors, laser
displacement sensors, and ultrasonic sensors, can be used to
perform proximity ranging [3]. Among these sensors, ultra-
sonic sensors have many important advantages over the others.
First, they can operate in extreme environmental conditions,
including in the presence of fog, dust, dirt, lighting or strong
electromagnetic interference (EMI) radiation. Second, ultra-
sonic sensors can be used for accurate distance measurement
by using the time-of-flight (TOF) principle. Moreover, due to
the low speed of sound in air, the same distance resolution
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can be achieved by using much simpler electronic circuits for
ultrasonic sensors than those for laser based sensors. Third,
ultrasonic sensors can be fabricated at a low cost. Since gen-
erating ultrasound only requires the movement of a surface
and can be effectively implemented by using electrostatic or
piezoelectric devices, the fabrication cost for ultrasonic trans-
ducers is usually much lower than that of laser or microwave
based sensors [22]. Indeed, ultrasonic sensors have proven
to be very cost effective remote sensing tools for proximity
ranging [5]–[7].

However, due to the presence of secondary echoes, using
ultrasonic sensors for very close proximity ranging is very
difficult. When ultrasonic sensors face a sound-hard reflective
surface, the reflected sound wave can bounce back and forth
several times between the sensors and the reflection surface
before decaying to zero, which results in unwanted strong
and overlapping secondary echoes in the received signal. The
time delays for the secondary echoes are approximately integer
multiples of the time delay of the first echo. The matched filter
based methods cannot resolve two echoes with a time spacing
less than the reciprocal of the signal bandwidth [8]. Hence,
for most of the very short distance measurement scenarios,
the matched filter based algorithms tend to fail or suffer from
severe performance degradations due to their poor resolutions
[9]. Most of the existing super-resolution time delay estimation
approaches (see [10] and [11] and the references therein) are
developed for general purposes. They do not exploit thea
priori information of the integer multiple time delays and the
nonnegative amplitude due to the acoustically hard reflections.

In this paper, we focus on acoustic proximity ranging in the
presence of secondary echoes. A new time delay estimation
method is proposed for the joint proximity ranging and sec-
ondary echo mitigation. We establish a flexible data model that
takes into account the acoustically hard reflection as well as
small random time delay variations of the secondary echoes
around the integer multiples of the time delay of the first
echo. The new time delay estimator is based on a nonlinear
least squares (NLS) fitting criterion. However, it is difficult to
directly optimize the highly nonlinear NLS cost function. We
present a novel computationally efficient time delay estimation
algorithm, referred to as multiecho parameter estimation for
acoustic ranging systems (multi-PEARS), to optimize the NLS
cost function.

The remainder of this paper is organized as follows. In
Section II, we describe the data model and formulate the
problem of interest. The multi-PEARS algorithm is presented
in Section III. Numerical examples and experimental results

0018-9456/03$17.00 © 2003 IEEE
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Fig. 1. Two-transducer acoustic proximity ranging system.

are given in Sections IV and V, respectively. Section VI
concludes this paper. The derivations of the single-echo based
PEARS algorithm (used in multi-PEARS) and the Cramér-Rao
bounds (CRBs) corresponding to multi-PEARS are included in
Appendices A and B, respectively.

II. DATA MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a two-transducer ranging system is used
to measure the distance between the transducers and an acous-
tically hard boundary. We assume that the propagation medium
is homogeneous and nondispersive and the common region cov-
ered by both the transmitter and the receiver is a smooth planar
surface. The transmitted signal is emitted from the transmitter
toward the reflection boundary. The directly reflected signal re-
ceived by the receiver is called the first echo. Since the distance
between the sensors and the boundary is very short, the sec-
ondary reflections between the sensors and the ranging surface
cannot be ignored. The time delays of the secondary echoes are
approximately integer times of the time delay of the first echo.
Hence the received signal can be modeled as

(1)

where , , represents the known (or measured)
real-valued transmitted signal andis the signal duration;
denotes the real-valued received signal; denote the am-
plitudes of the received signal and is assumed to be nonneg-
ative due to the acoustically hard reflection;denotes the time
delay corresponding to the first echo, and the time delays for
the secondary echoes are , , with
and being small perturbations around the integer mul-
tiples of ; is the real-valued noise, which is modeled as a
zero-mean Gaussian random process.

The received signal after sampling and A/D conversion has
the form

(2)

where denotes the sampling period, which is equal to the
reciprocal of the sampling frequency.

Our problem of interest herein is to estimate from
when , , or more practically
is known.

Instead of working on this problem in the time domain, the
frequency domain is preferred. This is due to the following
two reasons. First, for the time domain methods, we could
either restrict to be multiples of or resort to interpolation
if only is known [11]. This inconvenience can
be avoided by transforming the problem into the frequency
domain, where can take on a continuum of values. Second,
for the time domain data model in (2), for each
secondary echo must be dealt with separately. However, by
transforming (2) into the frequency domain and using the facts
that are small values, a more concise data model can
be obtained.

Let , , and , where
, denote the discrete Fourier transforms (DFTs)

of , , and , respectively. Provided that the
aliasing due to sampling is negligible, can be written as

(3)

Since both the transmitted signal and the received signal
are real-valued, their Fourier transforms are conjugate



LI et al.: ACOUSTIC PROXIMITY RANGING IN THE PRESENCE OF SECONDARY ECHOES 1595

symmetric.Mostof thecurrentlyavailableultrasonic transducers
are resonant devices that achieve high sensitivity at the frequency
of less than 200 kHz and are narrowband systems [2]. Hence, the
transmitted signal is narrowband in general. In the negative
frequency domain, i.e., for , since

is narrowband, mainly occupies a few frequency
bins in the range , where is the
peak location of and with being
the signal bandwidth. Based on the above assumption and for
very small , we have the following approximations
for the signal term in (3):

(4)

where , . Note that
is nonnegative and are complex-valued. In the

second step of deriving (4), we have assumed that
for and are so small
that (i.e., ), and hence

for .
Therefore, the small time delay variations of the secondary
echoes have been transformed to the phases of their complex
amplitudes.

Based on (3) and (4), and by exploiting the conjugate sym-
metry property of , , and , the unknown
parameters can be obtained by minimizing the following NLS
criterion:

(5)
where with denoting the transpose,

, and .
Define

(6)

where is the dimension of the vector. Let
be a diagonal matrix

(7)

Let

(8)

where

(9)

Define

(10)

and

(11)

Then (5) can be expressed as

(12)

where denotes the Euclidean norm. For the white noise case,
the above NLS approach is the same as the maximum likelihood
(ML) method. When the noise is colored, the NLS approach can
still give very accurate parameter estimates [12].

We remark that the time delay estimation problem considered
herein is similar to the well-known harmonic sinusoidal param-
eter estimation problem [13]–[15]. However, the sinusoidal sig-
nals in our problem are weighted by the known signal spectrum
and the amplitude for the first echo is nonnegative. Since most of
the existing harmonic retrieval methods are designed for signals
with complex-valued amplitudes and flat band-limited spectra,
they are not directly applicable to our problem of interest.

Note that minimizing (12) is a highly nonlinear optimization
problem. We present below an efficient optimization method,
referred to as the multi-PEARS algorithm, to minimize (12) by
taking into account both nonnegative and the weighted har-
monic structure of the data model.

III. M ULTI-PEARS ALGORITHM

The multi-PEARS algorithm optimizes the NLS cost func-
tion iteratively. First, we assume all of the amplitudes
are complex-valued and obtain an initial estimate by minimizing
(12) via a fast Fourier transform (FFT)-based method. Next,
based on the initial estimates, we subtract out the components
of the secondary echoes and keep only the component of the
first echo. Then, the single-echo based PEARS algorithm [16]
is used to refine the initial time delay estimate. The refining step
is iterated several times.

A. Initialization Stage

Assume that are complex-valued, it can be shown
that the unknown parameters minimizing (12) can be deter-
mined by [17]

(13)

where

(14)

and

(15)

with denoting the conjugate transpose. According to the
parsimony principle [18], if is indeed nonnegative, the es-
timate obtained by maximizing should be less accurate
than that obtained by minimizing the true cost function of (12).
Note that (13) is a one-dimensional search problem and
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usually has many local maxima. Hence, maximizing re-
quires the search over a very fine grid. By taking advantage of
the harmonic structure of the data model, we use zero-padding
FFT to perform such a search computationally efficiently.

Note that in (14) can be expressed as

...
...

...
...

. . .
. . .

(16)

where denotes the complex conjugate and

(17)

with denoting the th diagonal element of the diagonal
matrix in (7), and can be expressed as

(18)

where

(19)

with denoting the th element of in (6).
It can be seen from (17) and (19) that and

can be obtained as follows. First, the discrete time Fourier
transform (DTFT), which can be efficiently implemented
by using zero-padding FFT, is applied to the sequences

and , respectively. Next, the
linear phase term is multiplied to the outputs of
DTFT, and finally, the sampling is performed at the frequency
points .

Define the following two vectors which are obtained by mul-
tiplying the phase term to the FFTs of
and , respectively, as

(20)

and

(21)

where denotes the data length after zero-padding. Forsuf-
ficient large and for any given and , the corresponding and

can be approximately obtained by picking the elements of
and at the index , where denotes rounding

to the nearest integer. Once and are in hand,
and can be constructed and substituted

into (14) to obtain the cost function at the . The cal-
culation steps for the initial estimation can be summarized as
follows.

Step 1) Zero-pad and to
length of and perform -point FFTs. Compen-
sate out the linear phase term for the FFTs
and obtain the data vectorsand , respectively.

Step 2) For a given, obtain and as

(22)

and

(23)

Step 3) Construct and by using
and obtained in Step (2). Compute

for the given based on (14).
Step 4) According to the maximum peak location of the

computed in Step (3), obtain the initial esti-
mate of . Once is obtained, can be readily
calculated by using (15).

In practical applications, we have used , which is
sufficiently accurate for the initial estimation in our examples.
Note also that in the above search method, we need to compute
the FFTs of and only once.
Thereafter, the look-up table method is used to find
and for a given . Thus, this method is computationally
more efficient than the brute force search method, and can be
easily implemented by currently available dedicated FFT chips.

B. Refining Stage

Assume and are given, we subtract out the sec-
ondary echoes to obtain

(24)

Then (12) becomes

(25)

where is assumed to be nonnegative due to the acoustically
hard reflection. We have developed an efficient optimization
algorithm, referred to as PEARS, to solve the time delay es-
timation problem for this single echo case [16]. To make this
paper self-contained, the derivation of the PEARS algorithm is
given in Appendix A. Note that PEARS is a two-stage algorithm
which first obtains an initial estimate based on a smooth cost
function, and then refines the initial estimate based on the true
cost function. Herein, since we have already obtained the initial
estimate of , we only need to use the second stage of PEARS to
refine it. Note that iteration can improve the accuracy of. The
refined estimate can be used to redeterminevia (15). Then
the refined and are used to redetermine by using (24).
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(a)

(b)

(c)

Fig. 2. Numerical results. (a) Transmitted signal. (b) Received signal in
the absence of noise. (c) Comparison of the RMSEs of the estimates and the
corresponding CRBs for� . Two different cases for the time delay variations of
the secondary echoes are illustrated: 1)� = � = 0. The RMSEs and the
corresponding CRB are denoted as the circles and the solid line, respectively.
2)� = � = 0:1 T . The RMSEs and the corresponding CRB are denoted
as the squares and the dashed line, respectively.

Based on the updated , a more accurate estimateof can
be obtained by using PEARS. With the above simple prepara-
tions, we now present the steps of the multi-PEARS algorithm.

Step 1) Obtain the initial estimates and by using the
FFT-based method proposed in Section III-A. Let

and .
Step 2) Obtain by using (24).
Step 3) Obtain the refined by using the second stage of

PEARS as follows:
Substep 3.1: Obtain the measurement for each fre-

quency point as ,
, where denotes

the th element of .
Substep 3.2: Obtain the phase for each measurement by

, ,
where denotes the phase of.

Substep 3.3: Obtain the integers
, , where

is defined in (9) and denotes rounding
to the nearest integer.

Substep 3.4: Obtain the refined via

.
Step 4: Determine refined via (15) by using the refined.
Step 5: IterateSteps 2through4 and calculate the residue

after each iteration as . If the relative
change of the residues between two consecutive it-
erations is less than a small value, the algorithm
stops (in our examples, we have used to
test the convergence of the algorithm).

Before we proceed, let us remark on the following two facts.
First, multi-PEARS converges very fast due to the good initial
estimates. In practice, we note that the algorithm usually con-
verges within three or four iterations. Second, the number of
the echoes is determined by the practical measurement envi-
ronment. Whenever is unknown, it can be estimated from
by using, for instance, the generalized Akaike information cri-
terion [12].

IV. NUMERICAL EXAMPLES

To demonstrate the estimation accuracy of the proposed
multi-PEARS algorithm, we present a numerical example
below based on a windowed chirp signal. The transmitted
signal is defined as

(26)
where denotes the carrier frequency,represents the chirp
rate, and

(27)
with . In the following simulations, we use

, , the signal bandwidth ,
the carrier frequency , and the sampling frequency
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. is chosen in such a way that
ms. Thus s, kHz,
kHz, kHz, and ms. Define the re-

ciprocal of the signal bandwidth as ms. For
the received signal, , ,

, . Note that the time delay between each
echo is only about one half of . Thus, the first echo and sec-
ondary echoes cannot to be resolved by using the matched filter
based methods in this case. The SNR (signal-to-noise ratio) is
defined as , where is the energy of the
signal . The root-mean-squared errors (RMSEs) are ob-
tained through 300 Monte Carlo trials.

The waveforms of the transmitted signal and the noise free
received signal are compared in Fig. 2(a) and (b). In Fig. 2(c),
the RMSEs of the estimates ofare compared with the cor-
responding CRBs, which are the best performance bounds for
any unbiased estimators (the CRBs are derived in Appendix B).
Two different cases for the time delay variations of the sec-
ondary echoes are illustrated: 1) , and 2)

. In case (1), the RMSEs of the estimates and the
corresponding CRB are denoted as the circles and the solid line,
respectively. In case (2), the RMSEs of the estimates and the
corresponding CRB are denoted as the squares and the dashed
line, respectively. It can be seen that when there are no time delay
variations for the secondary echoes (i.e., ), the
RMSEs of the estimates can achieve the corresponding CRB.
Note also the threshold effects where the RMSEs of the esti-
mates deviate from the CRB when the SNR is less than 10 dB.
When there exist the time delay variations for the secondary
echoes, the estimates are biased and the RMSEs of the estimates
cannot achieve the corresponding CRB. However, if the time
delay variations are very small compared with the reciprocal
of the signal bandwidth, the RMSEs of the estimates can still
approach the corresponding CRB, and thus our method can
achieve a high estimation accuracy in these cases as well. In
the low SNR range, the RMSEs of the estimates deviate from
the true CRB because the algorithm can no longer resolve the
true peak of the highly oscillatory cross correlation function
between the received signal and the reference signal. However,
in this case, a reliable estimate can still be obtained based on
the peak of the envelope of the cross correlation function [19],
which corresponds to obtaining the estimate by using the first
stage of our algorithm.

Fig. 3(a)–(c) illustrates the RMSEs of the estimates com-
pared with the CRBs as the function of time delay by fixing
the SNR. The time delays are normalized toand we assume

. It can be seen that as the time delay decreases,
the corresponding CRB increases. This is as expected because
the smaller the time delay, the more the echoes are overlapped,
and hence the worse the estimation accuracy. Noted also the
threshold effects in Fig. 3(a) and (b), where the RMSEs of es-
timates deviate from the CRB when the time delay is less than
a certain value. In order to still achieve the corresponding CRB
in the smaller time delay region, the higher SNR is required.

V. EXPERIMENTAL RESULTS

Experiments have been conducted by using the commercially
available Panasonic ceramic transducers (EFRRSB40K5 and

(a)

(b)

(c)

Fig. 3. RMSEs and CRBs versus the normalized time delay at different SNRs.
The time delays are normalized toT , which is the reciprocal of the signal
bandwidth. (a)SNR = 10 dB, (b)SNR = 15 dB, and (c)SNR = 20 dB.
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TABLE I
PARAMETERS OF THEPANASONIC ULTRASONIC CERAMIC TRANSDUCERS

EFRTSB40K5). Table I lists the parameters of the transducers
used in our experiments [20]. The block diagram of the ex-
perimental setup and the photograph for the acoustic ranging
system are shown in Fig. 4(a) and (b), respectively. The geo-
metric centers of the two transducers are 17-mm apart and they
are mounted above an aluminum plate with a smooth surface,
which is used to simulate the planar acoustically hard boundary.
The acoustic transducers are fixed on a three–dimensional
(3-D) traverse controlled by a personal computer (PC), which
is used to adjust the position of the transducers related to the
boundary with an accuracy of 0.4m. The excitation signal
for the transmitter is a pulse burst generated by an arbitrary
waveform generator. The pulse repetition frequency is 192 Hz
and the pulse width is 0.15 ms. Each pulse has been modu-
lated by a carrier frequency of 40 kHz, which is the resonant
frequency of the transducer. A 16-bit ADC is used to sample

Hz the excitation signal for the transmitter
and the received signal from the receiver. The recorded data
are transferred to a host PC and the multi-PEARS algorithm is
applied to the recorded data to determine the distance estimates.
The sound speed is obtained by [21]

(28)

where is the ratio of specific heats, kg
is the gas constant, and in our experi-
ments. Thus we have . In our experiments, since
the transmitter and the receiver are closely placed, there exists a
small amount of crosstalk. Note that the crosstalk is unchanged
and independent of the reflected signal, and hence it can be
recorded and stored in the system in advance and subtracted
out from each received signal thereafter. All the received sig-
nals below are illustrated after the crosstalk subtraction.

Fig. 5 shows the recorded signals in the experiments.
Fig. 5(a) is the transmitted signal, which is obtained when
the transmitter and the receiver are face to face. The distance
between the transducers has been measured precisely. Thus
this waveform is taken as the known transmitted waveform.
Fig. 5(b) shows the discrete Fourier transform (magnitude)
of the signal in Fig. 5(a). It can be seen that the transmitted
signal is narrowband with the bandwidth about 4 kHz. Thus,
the nominal minimum distance required to resolve the first and
secondary echoes by the matched filter method is about 43 mm.

We then increase the distance between the transducers to the
boundary starting at 29 mm. The entire measurement range is
exactly 10 mm and is covered in 21 discrete levels. The distance

(a)

(b)

Fig. 4. Experimental setup for the acoustic ranging system. (a) Block diagram
of the experimental setup. (b) Photograph of the setup for the sensors and the
boundary.

difference between two consecutive levels is 0.5 mm. Fig.5(c)
to (f) show the measured waveforms recorded at the levels 3, 5,
15, and 19, respectively. As we can see that due to the presence
of the secondary echoes, the shapes of the received signals at
different levels are quite different. For the noise in this experi-
ment, the electronic noise dominates and the SNR is about 20 dB
based on the definition in Section IV. In the practical environ-
ment, the noise level can be much higher due to the presence of
the environmental noise. However, for a steady and controllable
environmental noise, one can obtain it by using another receiver
independently driven, and remove it from the real received sig-
nals thereafter.

Fig. 6 shows an example where the multi-PEARS algorithm
is applied to the recorded signal at level 19. We use generalized
Akaike information criterion to determine the number of the
echoes and obtain for this example. It can be seen from
this figure that multi-PEARS can correctly resolve the first and
secondary echoes even though they are heavily overlapped. Note
also that the reconstructed signal matches the original signal
very well. The relative error between these two signals is only
0.7%.

Fig. 7 shows the measurement results for the entire range
with the different choices for (the number of echoes). If
the secondary echoes are not taken into account and
is used, an accurate cannot be obtained. By using ,
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Recored waveforms in the real experiment. (a) Transmitted waveform. (b) Discrete Fourier transform of signal in (a). (c) Received signal at level 3.
(d) Received signal at level 5. (e) Received signal at level 15. (f) Received signal at level 19.

the measurement results are improved. But there are still four
levels where the measurements are quite different from the

true distances. (The results for are similar to those of
.) By using , very good results are obtained for
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Application of multi-PEARS to a recorded signal at level 19. (a) The original signal. (b)–(e) The reconstructed signals by using multi-PEARS estimates
for the echoes 1 to 4, respectively. (d) The reconstructed signal by superposition of the signals in (b)–(e).

all distances. The zoomed-in view of the measurement errors
are shown in Fig. 7(b). Note that the maximum measurement

error is about 0.02 mm for . The ratio between this
error and the entire measurement range is .
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(a)

(b)

Fig. 7. Stationary level measurement results obtained by applying the
multi-PEARS algorithm to the measured signal with the different choices of
L. The ranging distance covers from 29 to 39 mm. The distance between two
consecutive levels is 0.5 mm. (a) Measurement results versus the true distance
obtained by traverse. (b) Measurement errors.

VI. CONCLUSION

Due to the presence of unwanted strong and closely spaced
secondary echoes, it is very difficult to obtain accurate short
distance measurements for acoustic proximity ranging systems
using traditional matched filter based methods. In this paper,
a computationally efficient time delay estimation algorithm,
referred to as multi-PEARS, is presented for the joint proximity
ranging and secondary echo mitigation. Numerical results
demonstrate that multi-PEARS can deal with secondary echoes
effectively, and the estimates obtained by using multi-PEARS
can approach the corresponding CRBs as the SNR increases.
Experimental results obtained by using Panasonic ceramic
transducers show that multi-PEARS can also perform very well
in a practical environment.

APPENDIX A

DERIVATION OF PEARS

Based on the same notation for (25), the NLS cost function
for the single echo case is

(29)

where denotes the Euclidean norm. Note thatis nonneg-
ative. Hence the cost function in (29) can be expressed as

(30)

where is the real part of . Since
is a constant and is nonnega-

tive, the that minimizes is the one that maximizes the term
, which has the form

(31)

Note that the cost function can be expressed as

(32)

where

(33)

and

(34)

with being the phase of. In the absence of noise,

(35)

with being some integers. It can be seen from (32) that
is a sum of cosine functions of with frequencies

to , and hence is highly oscillatory, which makes it very
difficult to find the global maximum directly.

If were complex-valued, it can be shown that minimizing
with respect to would yield

(36)

Since is much smoother than the true cost function ,
we can obtain an initial estimate based on and then re-
fine it based on . The first stage of PEARS is to deter-
mine an initial estimate based on . Note that can
be efficiently maximized by applying FFT with zero-padding
to . Once the initial estimate, say, is available, we can
refine it based on the true cost function .
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Differentiating with respect to yields

(37)

The goal here is to approximate (37) aroundwith the first-
order approximation to find an approximate solution to
, which corresponds to the local maximum of around .

From (35), we have the following approximations at the high
SNR:

(38)

where

(39)

with denoting rounding to the nearest integer. In a small
range around , using (38) yields the following approxima-
tions:

(40)

Therefore, around can be approximately expressed as

(41)

Simplifying (41) and setting it to zero, we obtain the refined
solution of as

(42)

This estimator can be interpreted as a weighted sum ofesti-
mates of obtained from frequencies to separately.

APPENDIX B

DERIVATION OF THE CRBs

We sketch below the derivation of the CRBs for the
data model in (3) where are assumed to be
real-valued. Due to the conjugate symmetry property of
DFTs, can be expressed in terms of

with being com-
plex-valued and being real-valued. Let

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

and

(54)

We have

(55)

and

(56)

where

(57)

and

(58)

with

(59)

Assume that the additive noise is a real-valued
zero-mean white Gaussian random process with variance.
Denote

(60)

Since the DFT matrix is a unitary operator, the joint probability
density function for has the form

(61)



1604 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 5, OCTOBER 2003

Based on the extended Slepian–Bang’s formula, the CRB ma-
trix can be computed as

(62)

where with being the 2 2 identity matrix,
with being the identity

matrix, and denotes the derivative of with respect to the
th unknown parameter. Since and do not depend on the

parameters in and , and and do not depend on the
elements in and , it can be shown that the matrix CRB
is block diagonal with its last row and last column being zero
except for the last diagonal element. Let the signal parameter
vector be denoted as

(63)

Let

(64)

with being defined in (7), and with being the
identity matrix of dimension . Then

(65)

Define

(66)

(67)

where

(68)
with

(69)

and

(70)

where

(71)

and

(72)

Then

CRB (73)

which is easily evaluated numerically.
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